查看原文
其他

生于乌克兰的大数学家Gelfand于90岁生日宴会上的讲话

Gelfand 返朴 2022-12-10

点击上方蓝字“返朴”进入主页,可关注查阅往期文章


盖尔方特(Israel Gelfand,1913.9.2-2009.10.5),一位出生于乌克兰敖德萨的犹太裔大数学家。盖尔方特少年时即展现出超凡的数学能力,虽家境贫寒且因病无法上学,但他通过自学数学,于19岁时,在没有上过高中和大学的情况下,直接被录取为莫斯科大学的研究生,师从俄罗斯著名数学家柯尔莫哥洛夫(Kolmogorov)。后者让盖尔方特在当时新兴的泛函分析领域从事研究。28岁那年,他独立解决了希尔伯特第7问题。此外,他在调和分析、群表示论、积分几何、上同调等诸多领域都有重要贡献,甚至在生物学和生理学里也有所建树。1939年,他当选为苏联科学院通讯院士,1978年,他与Siegel共同获得首届沃尔夫数学奖。下文为2003年9月2日,盖尔方特在自己90岁生日晚宴上的讲话。


撰文 | Gelfand翻译 | 林开亮


很高兴见到大家。我被问到许多问题。我将尝试回答其中几个。


第一个问题是:“为什么到我这个年纪我还能够做数学?”


第二个:“在数学中我们必须要做什么?”


第三个:“数学的未来是什么?”


我认为这些问题太具体了。取而代之,我将试图回答我自己的问题:


“数学是什么?”(笑声.)


让我们从最后一个问题开始:数学是什么?


我的观点是,数学是文化的一部分,就像音乐、诗歌和哲学一样。在我的会议报告中我谈到了这一点。在那里我已经提到了数学的风格与古典音乐和诗歌的风格之接近。我很高兴发现以下四个共同的特征:首先是优美,其次是简单,第三是精确,第四是不可思议的思想。优美、简单、精确和不可思议的思想这四个东西的组合,正是数学的核心、古典音乐的核心。古典音乐不仅仅指 Mozart, Bach, Beethoven 的音乐,也包括 Shostakovich, Schnitke, Shoenberg (最后一个我懂得少些) 的音乐。所有这些,都是古典音乐。而且,我认为以上四个特点都一直呈现其中。由于这个原因,正如我在报告中所解释的,数学家喜欢古典音乐并非偶然。他们喜欢古典音乐,是因为它有相同风格的心理组织 (psychological organization) 


在数学与古典音乐和诗歌之间还有相似的一方面:它们都是理解许多事情的语言。例如,在我的报告中我讨论了一个我有了答案但现在不想回答的问题:为什么伟大的希腊先哲要研究几何?毕竟他们是哲学家。他们将几何作为哲学来学习。尔后大几何学家追随他们并遵循了同样的传统——要缩小视觉 (vision) 与推理 (reasoning) 之间的差距。例如 Euclid 的工作汇总了他那个时代的这方面的成就。不过这是另一个话题了。


数学的一个重要方面在于,它是不同领域——物理、工程、生物——的一门合乎需求的语言。此处最重要的词语是合乎需求的语言 (adequate language)。我们有合乎需求的语言,也有不合乎需求的语言。我都可以给出例子。例如,在生物学中用量子力学就不是合乎需求的语言,但用数学来研究基因序列就是合乎需求的语言。数学语言有助于组织许多事情。不过这是一个严肃的课题,我不想深入细节。


为什么这个课题现在重要?这是因为在我们的时代我们有“变革”。我们有可以做任何事情的计算机。我们不再受两个运算——加法和乘法——的束缚。我们也有许多其他工具。我确信,在10到15年之内,数学将完全不同于以往的样子。


下一个问题是:在我这个年纪我如何还能做数学?回答非常简单:我不是一个伟大的数学家 (I am not a great mathematician) 。我是很认真的。我一生都只是一个学生。从我人生的最初岁月我就在努力学习。例如,现在当我聆听会议报告和阅读讲义时,我发现我不知道的仍然何其之多,而且必须要学。因此,我一直在学习。在这个意义上,我是一个学生——而决不是“首领 (Führer) ”。


我想提一提我的老师。我不能完全列出我的所有老师,因为实在太多了。当我年少——大约十五六岁——时,我开始学习数学。我没有接受正规的教育,从未在大学注册,我“跳过”了本科。在19岁时,我成为了一名研究生,我从我年长的同事那里学到很多。


那时对我来说,最重要的老师是Schnirelman,一个英年早逝的天才数学家。然后有Kolmogorov, Lavrentiev, Plesner, Petrovsky, Pontriagin, Vinogradov, Lusternik,他们各不相同。其中有些人我很喜欢,有些人虽然我知道他们非常优秀但不敢苟同——让我说得委婉些——其观点(笑声)但他们都是伟大的数学家。我对他们所有人都非常感激,我从他们那里学到很多。


最后,我想给出一个数学之外的例子,这句简短精粹的话组合了我之前提到的简单、精确等其他特征。这是诺贝尔文学奖得主 Isaac Bashevis Singer* 说的一句话:“只要人还以刀枪摧毁弱小,就不会有正义。”


注释

*萨克・巴什维斯・辛格(1902–1991),犹太裔波兰人,1978 年诺贝尔文学奖得主,著有《有钱人不死的地方》《大火》《恶魔日记》,短篇故事如《傻子金宝》《愚人国的天堂》;童书以及回忆录等。这句话原文是“There will be no justice as long as man will stand with a knife or with a gun and destroy those who are weaker than he is.”


本文正文经授权转载自微信公众号“和乐数学”。


相关阅读

1  那些年读过的“自由而无用”的数学书

这位有诗人灵魂的女数学家,她每篇论文都值一个博士学位

发明,还是发现?数学本质的哲学之辩

丘成桐:数学为基础科学之基础(修订版)


近期推荐

1  母系遗传关系是怎样鉴定的?| DNA亲子鉴定的科学原理

2  雪花到底有多迷人?为什么?| 贤说八道

3  为什么现在的药不如以前多,也不如以前有用了?

4  专访爱德华·威腾:何处潜藏新物理?

5  美学者呼吁教改:科学哲学走进中学课堂,让学生理解科学的本质


特 别 提 示

1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。

2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。


↓↓返朴书单,点击购买↓↓




长按下方图片关注「返朴」,查看更多历史文章

微信实行乱序推送,常点“在看”,可防失联

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存